原子-微腔耦合系统的远程量子相干及量子相变

杨志远,邵雅婷,吴泉英,郝翔*

苏州科技大学数理学院, 江苏 苏州 215009

摘要 通过原子-微腔耦合体系,在绝热近似条件下得到了系统的有效哈密顿量,实现了海森堡自旋 XY 模型的量 子模拟过程。为了获取量子资源,基于相对熵判据分析了任意两体量子系统的量子相干性。通过严格的解析过程 获得了在任意间距下两个微腔原子系统的量子相干度。随两体间距增大,远程量子相干度按幂指数规律逐渐减 小。当改变系统参量时,远程量子相干度在量子临界点附近出现了数值突变现象,这为表征量子相变提供了一种 可能的序参量。在考虑光场噪声对量子相干性影响后,量子相干度随着时间振荡衰减,并逐渐消失。 关键词 量子光学;原子微腔耦合系统;海森堡自旋模型;量子相干性;量子临界现象 中图分类号 O413.2 文献标志码 A doi: 10.3788/LOP57.012701

Long-Range Quantum Coherenceand Quantum Phase Transition in Atom-Microcavity Coupled System

Yang Zhiyuan, Shao Yating, Wu Quanying, Hao Xiang*

College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China

Abstract In this study, the quantum simulation of the Heisenberg spin XY model is realized by obtaining the effective Hamiltonian of the atom-microcavity coupled systems via adiabatic approximation. Further, the quantum coherence between any two-body quantum systems is analyzed based on the criterion of relative entropy to obtain quantum resources. The long-range quantum coherence decreases exponentially with increasing the two-body spacing. Furthermore, when the system parameters are varied, it is found that there is a numerical mutation in the long-range quantum coherence near the quantum critical point, which provides a possible order parameter for characterizing the quantum phase transition. After considering the influence of external light-field noise on the quantum coherence, it is found that the quantum coherence decays with time and gradually disappears.

Key words quantum optics; atomic-microcavity coupled system; Heisenberg spin model; quantum coherence; quantum critical phenomena

OCIS codes 270.5580; 270.5585

1 引 言

随着量子信息科学技术的快速发展,许多量子 系统的物理资源被广泛地应用于量子计算、量子通 讯、量子测量与量子调控等领域^[1-4]。根据量子资源 理论,量子非局域性、量子关联、量子纠缠及量子相 干性都是有效的量子资源。当前,量子关联与量子 纠缠的度量及应用研究取得了丰硕成果^[1]。同样, 基于量子态叠加原理的量子相干在量子物理中也起 到了重要作用。相干性促进了现代电磁学的巨大发 展,当人们将量子化能量与态空间的直积结构相联 系时,量子相干性便成为了现代量子信息科学的一 个重要研究热点。类似于经典物理中的波干涉现 象,量子相干性不仅能够定量刻画量子干涉现象,还 可以解释多体量子的纠缠特性,因此,量子相干性可 以成为描述量子系统非经典性质的一个重要指标,

收稿日期: 2019-06-04; 修回日期: 2019-07-09; 录用日期: 2019-07-10

基金项目:国家自然科学基金(61875145)、江苏省"十三五"重点培育学科建设基金项目(20168765)、苏州科技大学研究 生培养创新工程项目(SKCX18-Y12)

^{*} E-mail: xhao@mail.usts.edu.cn

并在量子算法^[2]、量子测量^[3]、量子相变^[4]和量子密 钥分发^[5]等方面具有重要作用。

从资源理论的观点出发,德国某研究小组^[6]提 出了定量研究量子相干性的理论框架及量化条件 (包含非负性、单调性和凸性等)。近年来,人们在实 验上实现了量子相干性的调控^[7],如:采用激光手段 探测了量子相干性^[8],采用蒸馏方法提取了量子相 干性[9]。从量子系统的角度看,量子自旋系统具有 强关联特性和多体相互作用,一直是规模化量子计 算的主要研究对象^[10-13]。然而,量子自旋系统很容 易受到环境的影响。随着量子位数目增加,自旋系 统的消相干现象变得非常明显,这个局限已成为规 模化量子计算的一大障碍;而目,自旋之间的短程作 用不利于单量子系统的调控。为了解决这些实际困 难,人们将目光逐渐聚焦在一些混合量子系统上,如 原子与光学微腔耦合系统、光学晶体中的偏振子系 统等。这些系统通常具有较长的退相干时间,而且 人们在这些系统中容易实现单量子系统的局域操 作。这些优势使得人们越来越重视这类量子系 统[14-16]的物理性质及相关应用。近年来,相关理论 和实验研究发展迅速,人们发现原子或离子系统可 以通过光子交换实现相互耦合,从而可以有效地模 拟一些典型的量子自旋系统[17-20],解释一些量子相 变现象。因此,本文试图通过一些典型的混合量子 系统研究获取远程量子资源的可能性,以揭示远程 量子资源与多体系统量子临界现象之间的关系。

本文利用原子与微腔线性耦合系统实现了海森 堡 XY 自旋系统的量子模拟,并利用量子资源理论 定量研究了系统的远程量子相干性。首先,本文考 虑一维微腔线性耦合阵列,在绝热近似条件下得到 了一种等效哈密顿量;然后通过严格的解析过程,获 得了任意间距下两原子的量子相干度量,给出了整 个系统基态量子临界现象与远程量子相干度量的联 系,并选取两量子态的动力学演化研究了光场环境 噪声对量子相干性的影响。

2 原子与微腔耦合系统模拟等效海森 堡 XY 自旋模型

考虑一种 N 个微腔耦合的线性阵列,如图 1 所 示(J 表示两个微腔中原子之间相互作用的参数)。 这些微腔可以通过环状微型谐振腔或者光子晶体系 统来实现,每个微腔中都有一个三能级原子,该原子 包含两个能保持较长时间的能态 $|1\rangle$ 和 $|2\rangle$,以及一 个高激发态 $|3\rangle$ 。利用这两个低能级态 $|1\rangle$ 和 $|2\rangle$ 来 等效模拟两自旋态 $|\downarrow\rangle$ 和 $|\uparrow\rangle$ 。对于每一个微腔, 腔模与原子之间存在相互作用 g_a 和 g_b ,并且每个 原子都受到两种不同的外界激光的调控(频率为 ω_a 和 ω_b)。

Fig. 1 Schematic of microcavity coupling with atom

这些相互作用使原子发生能级跃迁,即: |3>→|1>和|3>→|2>。于是,这个系统的哈密量为

 $H = H_A + H_c + H_{AC}$, (1) 式中: H_A 为原子系统的哈密顿量, $H_A =$ $\sum_{j=1}^{N} \omega_3 |3_j\rangle\langle 3_j| + \omega_{12} |2_j\rangle\langle 2_j|$, N 为微腔的数量, ω_3 为原子激发态的能级, ω_{12} 代表 $|2_j\rangle \rightarrow |1_j\rangle$ 的跃迁能 级(为了简化计算, 设定最低能态 $|1_j\rangle$ 的能级为 0); H_c 为微腔系统的哈密顿量, $H_c = J \sum_{j=1}^{N} (a_j^{\dagger}a_{j+1} +$ H.c), a_j^{\dagger} 表示第 j 个腔中光场的产生算符, a_{j+1} 表 示第 j+1 个腔中光场的湮灭算符,符号 H.c 表示共 轭项; H_{AC} 表示原子与微腔的相互作用, $H_{AC} =$

$$\begin{split} \sum_{j=1}^{N} \left\{ \left[\frac{1}{2} \Omega_{a} \exp(-i\omega_{a}t) + g_{a}a_{j} \right] | 3_{j} \rangle \langle 1_{j} | + \text{H.c} \right\} + \left\{ \left[\frac{1}{2} \Omega_{b} \exp(-i\omega_{b}t) + g_{b}a_{j} \right] | 3_{j} \rangle \langle 2_{j} | + \text{H.c} \right\}, \\ \Omega_{a} , \Omega_{b} 表示原子在两种不同能级跃迁时的拉比振 荡频率, t 表示原子与光子相互作用的时间。将上 述整个系统哈密顿量转化成相互作用表象, 即$$

$$H_{\rm I} = \exp(\mathrm{i}H_{\rm o}t)H\exp(-\mathrm{i}H_{\rm o}t), \qquad (2)$$

式中: $H_0 = H_A + H_C - \delta \sum_{j=1}^{N} |2_j\rangle\langle 2_j|$,且参数 $\delta = \omega_{12} - (\omega_a - \omega_b)/2$ 。为了方便对角化,这里采用周期 性条件 N + 1 = 1。在傅里叶变化条件下, $a_j = \frac{1}{\sqrt{N}} \sum_{k} \exp\left(-i\frac{2\pi}{N}jk\right) c_k$, c_k 表示傅里叶变换后的光 场湮灭算符,下标 k 代表振动模式,从而可以将微 腔系统哈密顿量对角化。

为了绝热消除高激发态 $|3_j\rangle$ 和光子态,参数需 要满足一些大失谐条件,即 $\Delta_a = \omega_3 - \omega_a, \Delta_b = \omega_3 - \omega_b - (\omega_{12} - \delta), \delta_{ak} = \omega_3 - \omega_k, \delta_{bk} = \omega_3 - \omega_k - (\omega_{12} - \delta)$ 都满足 $\delta_{bk} = \omega_3 - \omega_k - (\omega_{12} - \delta)$ 都满足 $\delta_{bk} = \omega_3 - \omega_k - (\omega_{12} - \delta)$ 其中, Δ_a 、 $\Delta_b, \delta_{ak}, \delta_{bk}$ 分别被定义为不同跃迁频率之间的差 值, ω_k 为微腔在傅里叶变化时的模式频率。利用文 献[20]的方法,在略去一些高阶振荡项和常数部分 后,保留二阶近似结果,即

$$H_{\rm eff} \approx \sum_{j=1}^{N} B\sigma_{j}^{z} + (J_{1}\sigma_{j}^{\dagger}\sigma_{j+1}^{-} + J_{2}\sigma_{j}^{-}\sigma_{j+1}^{\dagger} + {\rm H.c}),$$
(3)

式中: $\sum_{j=1}^{N} B\sigma_{j}^{z}$ 表示等效磁场对系统能量的贡献, $B = \frac{\delta}{2} - \frac{1}{2} \left(\frac{\Omega_{b}}{4\Delta_{b}} - \frac{|\Omega_{a}|^{2}}{4\Delta_{a}} \right)$, 代表全局有效磁场 强度,表示有效的相互作用; $J_{2}\sigma_{j}^{-}\sigma_{j+1}^{+}$ 表示微腔原子 相互作用部分; $\sigma_{j+1}^{-}, \sigma_{j}^{-}$ 分别表示第 j + 1 湮灭算符 和 第 $j \stackrel{r}{r}$ 生 算 符; 等 效 自 旋 算 符 $\sigma_{j}^{z} = |2_{j}\rangle\langle 2_{j}| - |1_{j}\rangle\langle 1_{j}|$ 表示第 j 个微腔沿 z 方向的算 符; $\sigma_{j}^{\dagger} = |2_{j}\rangle\langle 1_{j}|$, 与此对应的物理过程可以认为是 当第 j 个微腔原子发生能级跃迁并释放光子时, 其 光子能量被近邻微腔原子吸收, 从而引起新的原子 能级跃迁; J_{1}, J_{2} 表示两个微腔之间的相互作用,

$$J_{1} = \frac{1}{N} \sum_{k} \frac{\exp(ik)}{(\omega_{a} + \omega_{b})/2 - \omega_{k}} \left(\frac{|\Omega_{a}|^{2} g_{b}^{2}}{\Delta_{a}^{2}} + \frac{|\Omega_{b}|^{2} g_{a}^{2}}{\Delta_{b}^{2}} \right), J_{2} = \frac{1}{N} \sum_{k} \frac{\exp(ik)}{(\omega_{a} + \omega_{b})/2 - \omega_{k}} \times$$

 $\frac{\Omega_a \Omega_b g_a g_b}{\Delta_a \Delta_b}$ 。当 J_1 、 J_2 为实数时,等效哈密顿量可以认为是海森堡自旋 XY 模型,即

$$H_{XY} = J_{1} \sum_{j=1}^{N} \left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x} + \frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y} + \lambda \sigma_{j}^{z} \right),$$

$$(4)$$

式中: σ_{1}^{s} 、 σ_{2}^{s} 分别表示 x 和 y 方向的泡利算符; γ 、 λ 分别表示各项异性参数和磁场强度, $\gamma = J_{2}/J_{1}$, $\lambda = B/J_{1}$ 。这里 XY模型是指等效自旋之间只存在 X和 Y 方向的相互作用,所有参数都保留至二阶项。

在热力学极限下($N \rightarrow \infty$),通过 Jordan-Wigner 和 Bogoluibow 变换^[21],上述 *XY* 模型可以实现严 格对角化。在等效自旋直积表象{ $|\downarrow \downarrow \downarrow \rangle$, $|\downarrow \uparrow \rangle$, | $\uparrow \downarrow \rangle$,| $\uparrow \uparrow \rangle$ },任意两个不同位置间,等效系统的 约化密度矩阵可以写为

$$\boldsymbol{\rho}_{i',j} = \begin{bmatrix} \rho_{11} & 0 & 0 & \rho_{14} \\ 0 & \rho_{22} & \rho_{23} & 0 \\ 0 & \rho_{32} & \rho_{33} & 0 \\ \rho_{41} & 0 & 0 & \rho_{44} \end{bmatrix}, \quad (5)$$

式中:矩阵元素 $\rho_{11} = \frac{1}{4} (1 + 2\langle \sigma_i^z \rangle + \langle \sigma_i^z \sigma_j^z \rangle), \rho_{44} =$ $\frac{1}{4} (1 - 2\langle \sigma_i^z \rangle + \langle \sigma_i^z \sigma_j^z \rangle), \rho_{23} = \rho_{32} = \frac{1}{4} (\langle \sigma_i^x \sigma_j^x \rangle + \langle \sigma_i^z \sigma_j^y \rangle), \rho_{14} = \rho_{41} = \frac{1}{4} (\langle \sigma_i^x \sigma_j^x \rangle - \langle \sigma_i^z \sigma_j^y \rangle), \rho_{22} =$ $\rho_{33} = \frac{1}{4} (1 - \langle \sigma_i^z \sigma_j^z \rangle), \langle \cdot \rangle$ 代表自旋关联函数; σ_i^x , $\sigma_i^z \langle \sigma_i^z \sigma_j^z \rangle, \langle \sigma_i^z \sigma_j^z \rangle$

由于 XY 模型具有平移不变性,因此 $\langle \sigma_{t}^{z} \rangle = -\frac{1}{N} \sum_{p>0}^{N/2} \frac{\tanh(\xi\tau/2)}{\delta} [\cos(\phi_{p}) - \lambda], 其中, \tau 表示$ $能量激发谱, \tau = \sqrt{(\gamma \sin k)^{2} + (\cos k - \lambda)^{2}}; \xi 表$ $示能量, \xi = 1/(k_{\rm B}T), T 表示温度, k_{\rm B} 为玻尔兹曼$ $常数; \phi_{p} 表示 1 个周期, \phi_{p} = 2\pi p/N; p 表示在 1 个$ 周期内的粒子数, p = -N/2, ..., N/2。根据文献[19,22]的结论, 关联函数可以表示为,

$$\langle \sigma_{i}^{x} \sigma_{j}^{x} \rangle = \begin{vmatrix} G_{-1} & G_{-2} & \cdots & G_{-R} \\ G_{0} & G_{-1} & \cdots & G_{-R+1} \\ \vdots & \vdots & & \vdots \\ G_{R-2} & G_{R-3} & \cdots & G_{-1} \end{vmatrix} , \quad (6)$$

$$\langle \sigma_{i}^{y} \sigma_{j}^{y} \rangle = \begin{vmatrix} G_{1} & G_{0} & \cdots & G_{-R+2} \\ G_{2} & G_{1} & \cdots & G_{-R+3} \\ \vdots & \vdots & & \vdots \\ G_{R} & G_{R-1} & \cdots & G_{1} \end{vmatrix} , \quad (7)$$

$$\langle \sigma_{i}^{z} \sigma_{j}^{z} \rangle = (\sigma^{z})^{2} - G_{R} G_{-R} , \qquad (8)$$

 G_R

走

中:

$$-\frac{1}{N}\sum_{p>0}^{N/2}\cos(\phi_p R)\left[\cos(\phi_p)-\lambda\right]\frac{\tanh\left(\xi\tau/2\right)}{\tau} +$$

 $\frac{\gamma}{N} \sum_{p>0}^{N/2} \sin(\phi_p R) \sin(\phi_p) \frac{\tanh(\xi\tau/2)}{\tau}, 在热力学极$ $限(N→∞)和绝对零度下, \tanh(\zeta\tau/2)=1; R 表示任$ 意两个微腔原子的间距, R=|i'-j|。下面将根据这些解析结果,定量研究远程条件下(R>1)的量子相干性。

3 远程量子相干性与量子临界现象

近年来,人们通过量子信息理论将一些量子

资源与量子相变紧密联系起来。例如,量子纠 缠^[23]、量子失谐^[24]、量子信息熵^[25]等量子信息量 被用于定量描述量子临界现象,表征多体系统中 的量子相变。人们发现,对于典型的海森堡 XY 模型,当λ=1时,整个系统基态发生突变。本研 究通过定量分析远程距离下微腔原子的量子相干 性发现,远程量子相干性可以有效刻画多体量子 系统的量子临界行为。根据资源理论,Baumgratz 等^[6]基于相对熵提出了一种量子相干度量方法, 其表达式为

$$Q_{C_{R}}(\boldsymbol{\rho}_{i',j}) = S(\boldsymbol{\rho}_{\text{diag}}) - S(\boldsymbol{\rho}_{i',j}), \qquad (9)$$

式中: Q_{c_R} 表示量子相干度; $S(\rho)$ 表征密度矩阵的 Von Neumann 熵; $S(\rho_{i',j})$ 为第 i'个与第 j 个两原 子系统的量子态 Von Neumann 熵。 $S(\rho_{diag})$ 表示去 掉密度矩阵 ρ 所有非对角元素后的矩阵熵。这种 量子相干性度量取决于参考基矢选取。基于上述度 量方法,可以得到任意间距下两体系统的量子相 干^[26-27]为

$$Q_{\mathsf{C}_{R}}(\boldsymbol{\rho}_{i',j}) = \sum_{i'=1}^{4} \chi_{i'} \operatorname{lb} \chi_{i'} - \sum_{i'=1}^{4} \rho_{i'i'} \operatorname{lb} \rho_{i'i'}, (10)$$

$$\operatorname{c}_{R}(\boldsymbol{\rho}_{i',j}) \approx \mathfrak{E} \mathfrak{E} \mathfrak{E} \mathfrak{P} \mathfrak{P} \mathfrak{D} \mathfrak{P} \mathfrak{A} \mathfrak{A} \mathfrak{E} \mathfrak{1}, \chi_{1} = \chi_{2} = \frac{1}{4} [(1 + \langle \sigma_{i'}^{z} \sigma_{j}^{z} \rangle) \pm 2\sqrt{(\langle \sigma_{i'}^{x} \sigma_{j}^{x} \rangle - \langle \sigma_{i'}^{y} \sigma_{j}^{y} \rangle)^{2} + \langle \sigma_{j}^{z} \rangle^{2}}],$$

$$\chi_{3} = \chi_{4} = \frac{1}{4} [1 - \langle \sigma_{i'}^{z} \sigma_{j}^{z} \rangle \pm 2 \mid \langle \sigma_{i'}^{x} \sigma_{j}^{x} \rangle + \langle \sigma_{i'}^{y} \sigma_{j}^{y} \rangle \mid];$$

 ρ_{iii} 为密度矩阵 ρ 的对角元素。

如图 2 所示,量子相干度随着系统间距的增加 而不断减小,其变化规律满足幂律衰减规律。这一

现象与量子失协幂指数律衰减规律相似。从图中可 以发现,在任意远程间距 R 下,都可以获得非零的 量子相干度,这为远程量子信息的处理提供了有效 资源。随着各项异性参数 γ 的增大,远程量子相干 度不断减小。在不失一般性的情况下,选取R=5。 在此条件下,采用数值模拟得到了量子相干度与各 项异性参数 γ 、磁场强度 λ 的关系,结果如图 3 所 示。从图 3(a)可以看出:量子相干性随着 γ 的增大 而增大;随着磁场强度增大,量子相干性不断减小, 但在临界点 $\lambda = 1$ 附近,会出现明显的突变行为。为 了进一步研究量子临界现象,采用数值模拟计算得 到了量子相干度随磁场强度的梯度变化,结果如图 3(b)所示。可以发现,在不同的 γ 下,量子相干度 对有效磁场的一阶导数在λ=1处都出现了明显的 不连续现象,这种现象就说明了整个系统基态发生 了量子相变。

Fig. 2 Quantum coherence as a function of R when effective magnetic field is at critical point ($\lambda = 1$)

图 3 量子相干的三维图及其量子临界现象。(a)量子相干度与各向异性参数 γ 和磁场强度 λ 的关系; (b)量子相干度对有效磁场一阶导数曲线图(R=5)

Fig. 3 Three-dimensional graph of quantum coherence and its quantum critical phenomena. (a) Relationship among quantum coherence, anisotropic parameters γ , and magnetic field strength λ ; (b) curves of first derivative of quantum coherence with respect to effective magnetic field (R=5)

4 光场噪声对量子相干性的影响

在量子信息处理中,光腔与原子耦合系统不可 避免地会受到环境的影响。一般而言,环境噪声会 引起量子系统的退相干过程,所以有必要讨论微腔 的光场噪声对系统量子相干度的影响,定量分析量 子相干性在光场噪声中的动力学行为。选取简单的 量子系统(N=2)来研究其动力学演化过程^[28-29],当 每个等效量子系统在光场噪声作用下发生自发辐射 时,可以计算光场噪声对量子相干度的影响。

利用量子主方程来分析海森堡模型系统中量子 相干度的动力学演化。首先选取两量子位系统,其 哈 密 顿 量 为 $H_1 = \frac{J}{2}[(1 + \gamma)(\sigma_A^x \sigma_B^x) + (1 - \gamma)(\sigma_A^x \sigma_B^x)] + \frac{\lambda}{2}(\sigma_A^x + \sigma_B^x) \cdot \sigma_A^x \cdot \sigma_B^x \cdot$

$$\dot{\boldsymbol{\rho}}_{AB}(t) = -i[H, \boldsymbol{\rho}_{AB}] + \hat{L}(\boldsymbol{\rho}_{AB}), \quad (11)$$

超算符 $\hat{L}(\boldsymbol{\rho}_{AB})$ 可以表示为

 $\hat{L}(\boldsymbol{\rho}_{AB}) = \sum_{i=A,B} (\bar{n}_i + 1) \Gamma_i (2\sigma_i^+ \boldsymbol{\rho}_{AB} \sigma_i^- - \boldsymbol{\rho}_{AB} \sigma_i^+ \sigma_i^- - \sigma_i^+ \sigma_i^- \boldsymbol{\rho}_{AB}) +$

 $\bar{n}_{i}\Gamma_{i}(2\sigma_{i}^{-}\rho_{AB}\sigma_{i}^{+}-\rho_{AB}\sigma_{i}^{-}\sigma_{i}^{+}-\sigma_{i}^{-}\sigma_{i}^{+}\rho_{AB}),$ (12) 式中: \bar{n}_{i} 为热储层的平均数; Γ_{i} 为系统发生自发辐射 时的衰减系数; $\sigma_{i}^{+},\sigma_{i}^{-}$ 分别表示 A 或 B 粒子的产生 和湮灭算符; ρ_{AB} 为表示 A、B 两个原子系统的密度 矩阵。

为了方便计算,假设每个系统与各自局域光场 发生作用时,光场的平均光子数满足 $\bar{n} = \bar{n}_i$ 。系统 发生自发辐射时,其衰减系数为 $\Gamma_i = \Gamma$,表示光子与 环境的相互作用。一般情况下,平均光子数与光场 的环境温度有关, $\bar{n} = \frac{1}{\exp\left[\omega/(k_{\rm B}T) - 1\right]}$, ω 为光 场的频率。本文选取两系统的基态为初始态 $\rho_{\rm AB}(0) = \frac{1}{\sqrt{\left[m - \sqrt{(m^2 + 1)}\right]^2 + 1}} \times [m - \sqrt{(m^2 + 1)} | \uparrow \uparrow \rangle + | \downarrow \downarrow \rangle],m$ 为磁场强

Fig. 4 Evolution of effective magnetic quantum coherence with time ($\Gamma_i = 0.3, \lambda = 1, \bar{n}_i = 0$)

度与各项异性参数之比,
$$m=\frac{\lambda}{\gamma}$$
。

从图 4 所示的模拟计算结果中可以看出,当衰 减强度一定时,量子相干度随着时间振荡衰减,峰值 不断减小,最后趋于零。这表明,光场噪声对量子相 干度表现为一定的抑制作用。

5 结 论

基于一种原子与微腔的耦合系统,通过激光调 控手段实现了一维海森堡 XY 自旋模型的量子模 拟。通过一维 XY 海森堡模型的严格解析解,讨论 了两个任意间距下微腔原子系统的量子相干性,并 通过相对熵判据,定量研究了远程量子相干度与量 子多体临界现象之间的联系。结果发现,在这样的 量子系统中,随着间距增加,远程量子相干度按照幂 律规律逐渐减小。在较远间距下,微腔原子系统仍 会存在非零量子相干度,这为规模化量子计算和量 子信息处理提供了有效资源。在磁场强度临界值附 近,远程量子相干度发生了明显的突变,表现为其一 阶导数值在临界点处不连续,这为表征基态量子相 变提供了有效序参量。通过模拟计算发现,在光场 噪声影响下,量子相干度会随着时间振荡而衰减,并 且逐渐消失。

参考文献

- Amico L, Fazio R, Osterloh A, et al. Entanglement in many-body systems [J]. Reviews of Modern Physics, 2008, 80(2): 517-576.
- [2] Hillery M. Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation [J]. Physical Review A, 2016, 93 (1): 012111.
- [3] Imran M, Tariq H, Rameez-ul-islam, et al. Doubly

tagged delayed-choice tunable quantum eraser: coherence, information and measurement [J]. Laser Physics Letters, 2018, 15(1): 015205.

- [4] Zhang G Q, Xu J B. Quantum coherence of an XY spin chain with Dzyaloshinskii-Moriya interaction and quantum phase transition[J]. Journal of Physics A: Mathematical and Theoretical, 2017, 50 (26): 265303.
- [5] He Y F, Yang H J, Wang D, et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum [J]. Acta Optica Sinica, 2019, 39(4): 0427001.

何业锋,杨红娟,王登,等.基于标记配对相干态和 轨道角动量的量子密钥分配[J].光学学报,2019, 39(4):0427001.

- [6] Baumgratz T, Cramer M, Plenio M. Quantifying coherence[J]. Physical Review Letters, 2014, 113 (14): 140401.
- [7] Shi X, Yuan H, Mao X, et al. Robust quantum state transfer inspired by Dzyaloshinskii-Moriya interactions[J]. Physical Review A, 2017, 95(5): 052332.
- [8] Zhang Y Z, Yan T M, Jiang Y H. Ultrafast mapping of coherent dynamics and density matrix reconstruction in a terahertz-assisted laser field [J]. Physical Review Letters, 2018, 121(11): 113201.
- [9] Chitambar E, Streltsov A, Rana S, et al. Assisted distillation of quantum coherence [J]. Physical Review Letters, 2016, 116(7): 070402.
- [10] Bloch I. Quantum coherence and entanglement with ultracold atoms in optical lattices[J]. Nature, 2008, 453(7198): 1016-1022.
- [11] Buluta I, Ashhab S, Nori F. Natural and artificial atoms for quantum computation [J]. Reports on Progress in Physics, 2011, 74(10): 104401.
- [12] Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots [J]. Reviews of Modern Physics, 2007, 79(4): 1217-1265.
- [13] Jaksch D, Bruder C, Cirac J I, et al. Cold bosonic atoms in optical lattices[J]. Physical Review Letters, 1998, 81(15): 3108-3111.
- [14] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415 (6867): 39-44.
- [15] Yu Z F, Chai X D, Xue J K. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice [J]. Physics

Letters A, 2018, 382(18): 1231-1237.

- [16] Flottat T, de Forges de Parny L, Hébert F, et al. Phase diagram of bosons in a two-dimensional optical lattice with infinite-range cavity-mediated interactions
 [J]. Physical Review B, 2017, 95(14): 144501.
- [17] Hartmann M J, Brandão F G S L, Plenio M B.
 Effective spin systems in coupled microcavities [J].
 Physical Review Letters, 2007, 99(16): 160501.
- [18] Chen Z X, Zhou Z W, Zhou X X, et al. Quantum simulation of Heisenberg spin chains with nextnearest-neighbor interactions in coupled cavities [J]. Physical Review A, 2010, 81(2): 022303.
- [19] Porras D, Cirac J I. Effective quantum spin systems with trapped ions [J]. Physical Review Letters, 2004, 92(20): 207901.
- [20] James D F V. Quantum computation with hot and cold ions: an assessment of proposed schemes [J]. Fortschritte der Physik, 2000, 48(9/10/11): 823-837.
- [21] Barouch E, McCoy B M, Dresden M. Statistical mechanics of the XY Model. I[J]. Physical Review A, 1970, 2(3): 1075-1092.
- [22] Cai J M, Zhou Z W, Guo G C. Robustness of entanglement as a signature of quantum phase transitions [J]. Physics Letters A, 2006, 352(3): 196-201.
- [23] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement [J]. Reviews of Modern Physics, 2009, 81(2): 865-942.
- [24] Chen Q, Zhang C J, Yu S X, et al. Quantum discord of two-qubit X states[J]. Physical Review A, 2011, 84(4): 042313.
- [25] Vedral V. The role of relative entropy in quantum information theory[J]. Reviews of Modern Physics, 2002, 74(1): 197-234.
- [26] Wang G Y, Guo Y N. Protection of quantum coherence of qubit based on quantum feedback [J]. Laser & Optoelectronics Progress, 2018, 55(10): 102702.
 王国友,郭有能.基于量子反馈保护量子比特的相干 性[J]. 激光与光电子学进展, 2018, 55(10):
- [27] Liu Y X, Zhang S L, He L, et al. The expression of ensemble average internal energy in long-range interaction complex system and its statistical physical properties [J/OL]. (2019-01-01) [2019-08-07]. https://arxiv.org/abs/1902.00217.
- [28] Xu Y H, Ren X Z, Liu X Y. Entanglement evolution characteristics of quantum Rabi models with two

102702.

arbitrary qubits [J]. Acta Optica Sinica, 2018, 38 (1): 0127001. 徐玉虎,任学藻,刘雪莹.两任意量子比特 Rabi 模型的纠缠演化特性[J].光学学报, 2018, 38(1): 0127001. [29] Yan L. Evolution property of entanglement between two subsystems [J]. Laser & Optoelectronics Progress, 2017, 54(3): 032701.
闫丽.两子系统间纠缠演化特性[J].激光与光电子 学进展, 2017, 54(3): 032701.